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Genome-wide association studies (GWAS)

. . . REVIEW
* TeS'.tlng SIngle nUCIthlde Five Years of GWAS Discove
variants/polymorphisms (SNVs/SNPs) for R TER O LS R
association with complex trait/disease eer My e Nt & frovn Motk | HeGatn T and o
= >=1 million SNPs tested (whole-genome sequencing, AJHG 2012
imputed chip data) REVIEW

= significance level at 5 * 10~8 (multiple testing) 10 Years of GWAS Discovery:

Biology, Function, and Translation

Peter M. Visscher,!:2* Naomi R. Wray,"2 Qian Zhang,! Pamela Sklar,> Mark I. McCarthy,*5.6

* First GWAS in 2005 (age-related macular Matthew A. Brown,” and Jian Yang
degeneration) AJHG 2017
REVIEW
° Po|ygen|c a rchiteq‘tu re, small effect Sizes’ |arge 15 years of GWAS discovery: Realizing the promise
Sa m ple Slzes req u I red (meta—a na Iyses) Abdel Abdellaoui,'.” Loic Yengo,” Karin ]J.H. Verweij,' and Peter M. Visscher”
AJHG 2023

* Observed ,gap‘ between amount of GWAS
findings and heritability
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* Goal: identify disease mechansims, drug associated with human height
targets, personalized medicine
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Manhattan plot: GWAS of amyotrophic lateral sclerosis
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Regional association plot: GWAS of idiopathic scoliosis in females
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GWAS sample sizes vs. loci
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Fig. 2 | Number of loci identified as a function of GWAS sample size. A plot of the
number of independent or near-independent genome-wide significant loci (P<5x 107
reported from genome-wide association studies (GWAS) in European or predominantly
European populations for three anthropometric traits: body mass index (BM|)?4105.104182:355.334
height?*#3*34! and waist-to-hip ratio adjusted for BMI (WHRadjBMI)!®"*2-# _For each trait,
there is a threshold sample size above which the rate of locus discoveryaccelerates.

The identification of risk loci has yet to plateau for these traits.

Tam et al., Nature Review Genetics 2019




Challenges and limitations

Confounding (correlation is not causation)
* Population stratification can introduce false positives
* causal variants in linkage disequilibrium (LD)

Technical:
- Sample sizes growing, software solutions imperfect and bugs occur

From GWAS to biology:
- Identifying causal variants challenging
* ldentifying corresponding genes/mechanisms even harder

-~

Benefits and limitations of genome-
wide association studies

Vivian Tam', Nikunj Patel’, Michelle Turcotte’, Yohan Bossé®??, Guillaume Paré'*
and David Meyre@®4**

Nature Review Genetics 2019




Confounding: population stratification

* Allele frequency differences between
populations due to genetic drift and
gene flow

» Sampling from different populations
can lead to false-positive association

findings

genotype # case # control
AA 421 319
AB 469 505
BB 110 176

Population 1 Population 2
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cases controls




Confounding: population stratification

Common approach:
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Confounding: population stratification

e Other approach: family-based
association studies

* Classical transmission disequilibrium
test (TDT) in 1993

* TDT tests for both linkage and
association

* Robust against
* population stratification
* misspecified phenotype distributions
* ascertainment based on phenotypes

* Extended to Family-Based Association
Test (FBAT) framework by Nan Laird et
al.

i
Y.

B Aifected male |:| Unaffectad male
@ Affected female  (7) Unaffected female

Volume 50, Issue 4

RESEARCH ARTICLES | APRIL 28 200C

A Unified Approach to Adjusting Association
Tests for Population Admixture with
Arbitrary Pedigree Structure and Arbitrary
Missing Marker Information

Rabinowitz and Laird, Human Heredity 2000



Confounding due to LD
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LD: non-random association between alleles
of genetic loci in proximity due to linkage.

Pistis et al., PLOS One 2013
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Confounding due to LD

* Finemapping approaches: identifying
most likely causal variant (statistically)

* Resolution level lower bounded by LD

structure

@@ computaTionaL ToOLS

From genome-wide associations to
candidate causal variants by statistical
fine-mapping

Daniel J. Schaid' *, Wenan Chen? and Nicholas B. Larson’

Table 1| Commonly used Bayesian fine-mapping software

Software

BIMBAM v1.0
mvBIMBAM v1.0.0

SNPTEST v2.5.4-beta3

piMASSv0.9
BVSv4.12.1
FM-QTL
DAPv1.0.0
Fine-mapping
Trinculo
BayesFM

ABF
fgwasv0.3.6

CAVIAR/eCAVIAR

PAINTOR v3.0

CAVIARBFv0.2.1
FINEMAP v1.1

JAM in RZBGLIMS v0.1

Trait type®

gt and binary
mqt

qt, binary, mqt and
multinomial

qtand binary
Binary

qt

qt

Multinomial
Multinomial
Binary

qt and binary?
qt and binary?
qt and binary?

qt, binary® and mqt

qt and binary?
qt and binary?

qt and binary?

Input
covariates®

No
No
No

No

No
No

No

Uses Maximum  Input Causal Main output Refs
b ion? search
statistics? of causal
variants®
No Fixed No Exhaustive  Bayes factor
Yes 1 No Exhaustive  Bayes factor
No 1 No Exhaustive  Bayes factor
No Computed No MCMC Bayes factor and PIP
No Computed  Yes MCMC Bayes factor and PIP
No Computed  Yes MCMC Bayes factor and PIP
Yes 1, fixedand Yes Exhaustive  Bayesfactor and PIP
computed
No Computed No Greedy PIP
No Computed No Greedy Bayes factor and PIP
No 20 No MCMC PIP
Yes 1 No Exhaustive  Bayes factor
Yes 1 Yes Exhaustive  Bayes factor and PIP
Yes Fixed No Exhaustive  p probability
confidence set and
PIP
Yes Fixedand  Yes Exhaustive  Bayes factor and PIP
computed and MCMC
Yes Fixed Yes Exhaustive  Bayesfactor and PIP
Yes Fixed No Shotgun Bayes factor and PIP
stochastic
search
Yes Fixedand  No Exhaustive  Bayesfactor and PIP
computed and MCMC

Nature Review Genetics 2018




Technical errors: software implementations

* Versatile gene-based association = NESiappeaiioieene

study VEGAS/VEGAS2: Gene-based Z-scores Zq, ..., Z, from single variant analysis
association test using summary
statistics and LD information from
reference panel (Liu et al. 2010, Mishra ,
T = 2 ZO(i)

Two options: top-SNP or top-x%

and MacGregor 2015)
top x%
where
* Finding: top-x% implementation 22y = 220 = = 220

incorrect, can be fixed by minor
modification (single bracket
misplaced)

Twin Research and Human Genetics
Volume 20 B Number 3 I pp. 257-259 1 © The Author(s) 2017 I doi:10.1017/thg.2017.16

Reporting Correct p Values in VEGAS Analyses

e can introduce false positives




From GWAS to biology

* the majority of GWAS associations
remain mechanistically uncharacterized

* Most GWAS hits in noncoding regions of
the genome, uncertainty about which
gene is responsible for their biological
effects

REVIEW
From variant to function in human disease genetics
Tuuli Lappalainen’** and Daniel G. MacArthur™*5*

Over the next decade, the primary challenge in human genetics will be to understand the biological mechanisms
by which genetic variants influence phenotypes, including disease risk. Although the scale of this challenge is
daunting, better methods for functional variant interpretation will have transformative consequences for
disease diagnosis, risk prediction, and the development of new therapies. An array of new methods for
characterizing variant impact at scale, using patient tissue samples as well as in vitro models, are already being
applied to dissect variant mechanisms across a range of human cell types and environments. These approaches
are also increasingly being deployed in clinical settings. We discuss the rationale, approaches, applications,
and future outlook for characterizing the molecular and cellular effects of genetic variants.

Science 2021




From GWAS to biology: functional annotations

* Projects such as ENCODE (Nature 2020),
Gencode (Nucleic Acids Res 2021), and
Roadmap Epigenomics enabled
predictions of most severe class gene-
disrupting variants

* For most variant classes, accurate
predictions difficult

(o]

The epigenome
DNA methylation DNA

Roadmap Epigenomics
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Bernstein et al., Nature Biotechnology 2013




From GWAS to biology: QTL

* Another approach to reveal unknown * most common: cis-eQTLs (cis-
putative gene regulatory effects: associated QTLs associated to gene
molecular quantitative trait locus expression levels)
(molQTL) mapping * Limited by available tissues and cell
types
* molQTL: genetic variation associated * New directions through single cell
with molecular traits (gene expression, sequencing and spatial transcriptomics

splicing and chromatin accessibility).

Primer \ Published: 25 January 2023

Molecular quantitative trait loci

Francois Aguet , Kaur Alasoo, Yang I. Li, Alexis Battle, Hae Kyung Im, Stephen B. Montgomery & Tuuli

L_agpalainen

Nature Reviews Methods Primers 3, Article number: 4 (2023) | Cite this article

3448 Accesses | 1 Citations | 56 Altmetric | Metrics




From GWAS to biology: general SNP to gene strategies

ARTICLES

nature
gel'lethS https://doi.org/101038/s41588-022-01087-y

Computational gene prioritization tools B ons
Combining SNP-to-gene linking strategies

to identify disease genes and assess disease
omnigenicity

Closest gene not necessarily causally involved

Steven Gazal ©234%2, Omer Weissbrod ©3#, Farhad Hormozdiari3#, Kushal K. Dey @34,
Joseph Nasser®, Karthik A. Jagadeesh**, Daniel J. Weiner*, Huwenbo Shi®3#, Charles P. Fulco**™,
Luke J. O'Connor ®*, Bogdan Pasaniuc®, Jesse M. Engreitz*”8 and Alkes L. Price ®34°=

Article https://doi.org/101038/s41588-023-01443-6 G a Za I et a I °) N at u re G e n et i CS 2 O 2 2

Leveraging polygenic enrichments of
genefeaturesto predict genesunderlying
complex traits and diseases
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Next steps and outlook _ _
rejhe@channing.harvard.edu

ARTICLE

https://doi.org/10.1038/541586-018-0579-2

* Biobanks (large sample sizes) ] )
The UK Biobank resource with deep

phenotyping and genomic data

Clare Bycroft™", Colin Freeman', Desislava Petkoval'*", Gavin Band!, Lloyd T. Elliott?, Kevin Sharp?, Allan Motyer®,

* Incorporation of non-European genetic
Damjan Vukeevic®4, Olivier Delaneau®®’, Jared O’Connell®, Adrian Cortes'”, Samantha Welsh'?, Alan Young?,
a n C e St r'i e S (d ive rs ity) Mark Effingham'’, Gil McVean"", Stephen Leslie**, Naomi Allen", Peter Donnelly'*'* & Jonathan Marchini'*'4#
Nature 2018
* Integrative multi-omics analyses

example: NHLBI Trans-Omics for Precision Medicine r
(TOPMed) initiative NHLBI
{ PO g, P\ |
* Single cell, spatial transcriptomics Y1/ . AWM
L Hx'_:-' .

e Cell models, animal models, gene
perturbation approaches (difficult for
complex genetics)

TOPMed

h

“Drug targets with human genetic evidence of disease association are twice as likely to lead to approved drugs
and are even more likely to be approved when the exact casual gene(s) is known.”

Gerks, Thorp, Gerring, Nature Genetics 2022

citing Nelson et al., Nature Genetics 2015
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