

Quantifying similarities between fMRI processing pipelines for efficient multiverse analysis

Micha Burkhardt Dr. Carsten Gießing Prof. Dr. Andrea Hildebrandt Dr. Daniel Kristanto

BHAVI 2024 October Symposium: *Guardians 2024 Conference*

Problem set-up

fMRI data is **noisy** and requires **long preprocessing**/analysis pipelines

- Researchers are faced with a plethora of arbitrary yet defensible decisions
- Many researcher degrees of freedom introduce bias and contribute to the replication crisis

Seite 2 20.12.2023

Quantifying similarities between fMRI processing pipelines for efficient multiverse analysis Micha Burkhardt - Guardians 2024 Conference

What is multiverse analysis?

Multiverse Analysis: Running multiple (equally defensible) analysis pipelines

- Proposed to help with the issue of flexibility in data processing/analysis
- Reduces bias from selective reporting, improves replicability and robustness

Why do we need multiverse analysis to be more efficient?

- In neuroimaging studies, the **space of decisions is large**
- The size of the multiverse scales with the cartesian product of its decisions

 \rightarrow It can quickly become computationally infeasible to run an entire multiverse

Carl von Ossietzky Universität Oldenburg

Why do we need multiverse analysis to be more efficient?

- Dafflon et al. (2022) proposed subsampling the multiverse
 - Builds search space from output similarities (e.g., functional connectivity)
 - Uses embedding algorithms to map relationships in a 2D space
 - Proximity in space reflects similar pipeline outputs
- We propose that we can **efficiently subsample** the space of decisions just by the analysis pipelines themselves
 - Embeddings based on pipeline configurations, not output similarity
 - Capture structural differences in the pipeline design

Quantifying similarities between fMRI processing pipelines for efficient multiverse analysis Micha Burkhardt - Guardians 2024 Conference

Data: fMRI analysis pipelines

The METEOR Project

- 220 fMRI analysis pipelines derived from literature (Kristanto et al., 2024)
 - 61 distinct data preprocessing and analysis steps

Kristanto, D., Burkhardt, M., Thiel, C., Debener, S., Gießing, C., & Hildebrandt, A. (2024). The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis. *Neuroscience and biobehavioral reviews*, *165*

Quantifying similarities between fMRI processing pipelines for efficient multiverse analysis Micha Burkhardt - Guardians 2024 Conference

Similarity of analysis pipelines

Similarity measures

- Classical measures
 - $\circ \quad \text{Jaccard index} \quad$
 - Hamming distance
 - Levenshtein distance
- Graph convolutional network approach
 - Applies Deep Graph Infomax
 - Creates nodal embeddings containing implicit features

Graph convolutional network (GNN) + Deep Graph Infomax (DGI)

- **GNNs**: Learn node/graph embeddings by aggregating neighbor info
- **DGI**: Unsupervised, maximizes info between node and graph embeddings
 - Training: Compares real vs. corrupted graphs to enhance structure
 - Also uses global features (frequency in literature, degree, type, ...)
- **Result**: Produces robust embeddings for downstream tasks
 - Embeddings are then used to assess pipeline similarity

Results

• Reasonable overlap between methods

considering order!

 Considering order improves ARI (cluster overlap)

Quantifying similarities between fMRI processing pipelines for efficient multiverse analysis Micha Burkhardt - Guardians 2024 Conference

Results

- Two distinct patterns:
 - Difference in pipeline length
 - Difference in pipeline ordering

Pattern 1: Different length		
Pipeline i	Structural preprocessing \rightarrow	Network construction
Pipeline j	Structural preprocessing \rightarrow	→ → → Network construction
→ Disagreement between measures: GCN-DTW: dissimilar GCN-DTW: dissimilar Levenshtein: similar Hamming: similar		
Pattern 2: Switc	h in order	
Pattern 2: Switc	h in order Structural preprocessing →	
Pattern 2: Switc	h in order Structural preprocessing → Structural preprocessing →	

Discussion

Summary

- The GCN approach seems to be promising for capturing relevant information
- Different measures show a general overlap but also distinct behaviours

Advantages

- The GCN approach does not require calculating the entire multiverse
- No need to use (valuable) subjects for creating a search space
- The approach is method-agnostic

Future work

- The performance of the proposed approach needs to be tested on empirical data
- Integrating the GCN approach into efficient multiverse analysis

Thank you for your attention!

Do you have any further feedback, questions, or ideas? Feel free to reach out! :)

Micha Burkhardt micha.burkhardt@uol.de

Daniel Kristanto daniel.kristanto@uol.de

Quantifying similarities between fMRI processing pipelines for efficient multiverse analysis Micha Burkhardt - Guardians 2024 Conference